Validation Qualifiers in database
- HR

clectic 57 H

CETIFICATION

SDG No:

JC32876

Laboratory:

Accutest, New Jersey

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

Humacao, PR

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken December 1-2, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for Benzaldehyde (Benzo(a)anthracene, 1,4-Dioxane and Naphthalene were analyzed following the SIM technique); and TCL pesticides (Dieldrin) the results were reported under SDG No.: JC32876. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	CAMDLE	MATRIX	ANALYSIS PERFORMED
	SAMPLE DESCRIPTION		
JC32876-1	FB120116	AQ- Field Blank Water	Benzaldehyde; Benzo(a)anthracene, 1,- 4-dioxane and Naphthalene (SIM); Pesticides TCL list (Dieldrin)
JC32876-2	OSMW-3D	Groundwater	Benzaldehyde; Benzo(a)anthracene, 1,- 4-dioxane and Naphthalene (SIM); Pesticides TCL list (Dieldrin)
JC32876-3	OSMW-4D	Groundwater	Benzaldehyde; Benzo(a)anthracene, 1,- 4-dioxane and Naphthalene (SIM); Pesticides TCL list (Dieldrin)
JC32876-4	OSMW-4D DUP.	Groundwater	Benzaldehyde; Benzo(a)anthracene, 1,- 4-dioxane and Naphthalene (SIM); Pesticides TCL list (Dieldrin)
JC32876-5	EB120116	AQ- Equipment Blank	Benzaldehyde; Benzo(a)anthracene, 1,- 4-dioxane and Naphthalene (SIM); Pesticides TCL list (Dieldrin)
JC32876-6	EB120216	AQ- Equipment Blank	Benzaldehyde; Benzo(a)anthracene, 1,- 4-dioxane and Naphthalene (SIM); Pesticides TCL list (Dieldrin)
JC32876-7	OSMW-2D	Groundwater	Benzaldehyde; Benzo(a)anthracene, 1,- 4-dioxane and Naphthalene (SIM); Pesticides TCL list (Dieldrin)
JC32876-7D	OSMW-2D MSD	Groundwater	Benzaldehyde; Benzo(a)anthracene, 1,- 4-dioxane and Naphthalene (SIM); Pesticides TCL list (Dieldrin)
JC32876-7S	OSMW-2D MS	Groundwater	Benzaldehyde; Benzo(a)anthracene, 1,- 4-dioxane and Naphthalene (SIM); Pesticides TCL list (Dieldrin)

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

12 2017

Méndez IC # 1886

A 1600857

Report of Analysis

Page 1 of 1

Client Sample ID: FB120116 Lab Sample ID:

JC32876-1

AQ - Field Blank Water

DF

1

Date Sampled: 12/01/16 Date Received: 12/05/16

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

OP99012

Project:

BMSMC, Building 5 Area, PR

Prep Date

Prep Batch Analytical Batch

EP4872

Run #1 Run #2

Initial Volume Final Volume

1000 ml

File ID

P109747.D

1.0 ml

Run #1 Run #2

4165-60-0

CAS No. Compound

Result

Analyzed

12/13/16

RL

By

RL

MDL

12/07/16

Units

Q

100-52-7 Benzaldehyde

ND

5.0 0.29

Run#2

ug/l

CAS No. Surrogate Recoveries

Nitrobenzene-d5

Run#1 58%

32-128% 35-119%

Limits

2-Fluorobiphenyl 321-60-8 Terphenyl-d14 1718-51-0

68% 107%

10-126%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: FB120116 Lab Sample ID: JC32876-1

Matrix: AQ - Field Blank Water

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/01/16 Date Received: 12/05/16

Percent Solids: n/a

Q

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	3P57130.D	1	12/09/16	SG	12/07/16	OP99012A	E3P2648
D #2							

Run #2

Method:

Project:

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3 91-20-3 123-91-1	Benzo(a)anthracene Naphthalene 1,4-Dioxane	ND ND ND	0.050 0.10 0.10	0.023 0.029 0.049	ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0 321-60-8	Nitrobenzene-d5 2-Fluorobiphenyl	62% 65%		19-1	25% 27%
1718-51-0	Terphenyl-d14	94%		10-1	19%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FB120116 Lab Sample ID: JC32876-1

Matrix: AQ - Field Blank Water Method: SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/01/16 Date Received: 12/05/16

Percent Solids:

File ID DF **Analytical Batch** Analyzed By Prep Date Prep Batch 12/08/16 OP99038 Run #1 8G974.D 1 12/08/16 RK G8G37

Run #2

Project:

Initial Volume Final Volume Run #1 1000 ml 10.0 ml

Run #2

CAS No. RLMDL Q Compound Result Units

60-57-1 Dieldrin ND 0.010 0.0036 ug/l

CAS No. Surrogate Recoveries Run#1 Run#2 Limits 877-09-8 Tetrachloro-m-xylene 81% 26-132% 877-09-8 Tetrachloro-m-xylene 86% 26-132%

2051-24-3 Decachlorobiphenyl 55% 10-118% 2051-24-3 Decachlorobiphenyl 53% 10-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Raw Data: P109748.D

SGS Accutest LabLink@939893 10:01 27-Dec-2016

Report of Analysis

Page 1 of 1

Analytical Batch

EP4872

Client Sample ID:	OSMW-3D
Lab Sample ID:	JC32876-2

File ID

P109748.D

Matrix: Method: AQ - Ground Water

1

SW846 8270D SW846 3510C

Date Sampled: 12/01/16 Date Received: 12/05/16

Percent Solids: n/a

OP99012

Q

BMSMC, Building 5 Area, PR

12/13/16

85%

DF Analyzed By Prep Date Prep Batch

12/07/16

10-126%

RL

Run #1 Run #2

Project:

	Initial Volume	Final Volume
Run #1	950 ml	1.0 ml

Terphenyl-d14

Run #2

1718-51-0

CAS No.	Compound	Result	RL	MDL	Units
100-52-7	Benzaldehyde	ND	5.3	0.30	ug/I
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	53%		32-1	28%
321-60-8	2-Fluorobiphenyl	64%		35-1	19%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

SG

Prep Date

10-119%

12/07/16

Page 1 of 1

Client Sample ID: OSMW-3D Lab Sample ID: JC32876-2

File ID

3P57131.D

Matrix: AQ - Ground Water Method:

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Analyzed

12/10/16

80%

DF

1

Date Sampled: 12/01/16 Date Received: 12/05/16

Percent Solids: n/a

Q

Prep Batch **Analytical Batch** OP99012A E3P2648

Run #1 Run #2

Project:

Initial Volume Final Volume Run #1 950 ml 1.0 ml

Terphenyl-d14

Run #2

1718-51-0

MDL CAS No. Compound Result RL Units 56-55-3 Benzo(a)anthracene ND 0.053 0.024 ug/l 91-20-3 Naphthalene ND 0.0310.11 ug/l 123-91-1 1,4-Dioxane 4.13 0.11 0.051 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 4165-60-0 58% Nitrobenzene-d5 24-125% 321-60-8 2-Fluorobiphenyl 64% 19-127%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID:	OSMW-3D
Lab Sample ID:	JC32876-2

Matrix:

AQ - Ground Water

Method: Project: SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/01/16

Q

Date Received: 12/05/16 Percent Solids: n/a

	File II	D DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Ru	n #1 8G975	.D 1	12/08/16	RK	12/08/16	OP99038	G8G37

Run #2

	Initial Volume	Final Volume
Run #1	1000 ml	10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	85%		26-13	32%
877-09-8	Tetrachloro-m-xylene	90%		26-13	32%
2051-24-3	Decachlorobiphenyl	59%		10-13	18%
2051-24-3	Decachlorobiphenyl	57%		10-13	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

RL

12/07/16

Page 1 of 1

Client Sample ID: Lab Sample ID:

File ID

P109749.D

OSMW-4D JC32876-3

AQ - Ground Water

Date Sampled: 12/01/16 Date Received: 12/05/16

Matrix: Method: Project:

SW846 8270D SW846 3510C

Analyzed

12/13/16

Percent Solids:

OP99012

Q

BMSMC, Building 5 Area, PR

DF

1

Analytical Batch Prep Batch Prep Date

EP4872

Run #1 Run #2

Initial Volume Final Volume Run #1 975 ml 1.0 ml

Run #2

CAS No. Result RL MDL Units Compound 0.30 100-52-7 Benzaldehyde ND 5.1 ug/l 123-91-1 1,4-Dioxane 17.9 1.0 0.67 ug/l Run#2 CAS No. Surrogate Recoveries Run# 1 Limits 4165-60-0 Nitrobenzene-d5 52% 32-128% 321-60-8 2-Fluorobiphenyl 61% 35-119% 1718-51-0 Terphenyl-d14 82% 10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

OSMW-4D Client Sample ID: Lab Sample ID: JC32876-3

Matrix: Method:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

Date Sampled: 12/01/16 Date Received: 12/05/16

Percent Solids:

Q

n/a

Project: BMSMC, Building 5 Area, PR

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** 12/07/16 OP99012A E3P2648 Run #1 3P57132.D 1 12/10/16 SG

Run #2

Initial Volume Final Volume Run #1 975 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units 56-55-3 Benzo(a)anthracene ND 0.051 0.023 ug/l 91-20-3 Naphthalene ND 0.10 0.030 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits

4165-60-0 Nitrobenzene-d5 59% 24-125% 321-60-8 2-Fluorobiphenyl 63% 19-127% 1718-51-0 Terphenyl-d14 82% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:	OSMW-4D
Lab Sample ID:	JC32876-3

AQ - Ground Water Matrix: Method:

SW846 8081B SW846 3510C

Date Sampled: 12/01/16 Date Received: 12/05/16

Percent Solids: n/a

Q

Project: BMSMC, Building 5 Area, PR

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	8G976.D	1	12/08/16	RK	12/08/16	OP99038	G8G37
ID #0							

Run #2

	Initial Volume	Final Volume
Run #1	980 ml	10.0 ml
Dun #2		

CAS No.	Compound	Result	RL	MDL	Units
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	84%		26-13	32%
877-09-8	Tetrachloro-m-xylene	88%		26-13	32%
2051-24-3	Decachlorobiphenyl	41%		10-11	8%
2051-24-3	Decachlorobiphenyl	41%		10-11	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

16 of 820

Report of Analysis

Page 1 of 1

Client Sample ID:	OSMW-4D DUP
T -L CI- ID.	TC2207C 4

Lab Sample ID: Matrix:

JC32876-4 AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: 12/01/16 Date Received: 12/05/16

Percent Solids:

Q

Method: Project: BMSMC, Building 5 Area, PR

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 P109750.D 1 12/13/16 RL 12/07/16 OP99012 EP4872 Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml Run #2

CAS No.	Compound	Result	RL	MDL	Units
100-52-7 123-91-1	Benzaldehyde 1,4-Dioxane	ND 17.8	5.0 1.0	0.29 0.66	ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	51%		32-1	28%
321-60-8	2-Fluorobiphenyl	61%		35-1	19%
1718-51-0	Terphenyl-d14	90%		10-1	26%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

l	Client Sample ID:	OSMW-4D	DUP
	I ah Sample ID:	IC32876-4	

Matrix:

Method:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

Date Sampled: 12/01/16 Date Received: 12/05/16

Percent Solids: n/a

Q

Project: BMSMC, Building 5 Area, PR

File ID DF Analyzed Ву Prep Date Prep Batch **Analytical Batch** Run #1 3P57133.D 1 12/10/16 SG 12/07/16 OP99012A E3P2648

Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3 91-20-3	Benzo(a)anthracene Naphthalene	ND ND	0.050 0.10	0.023 0.029	ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	56% 61% 95%		19-1	25% 27% 19%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \,\, analyte \,\, found \,\, in \,\, associated \,\, method \,\, blank$

N = Indicates presumptive evidence of a compound

SGS Accutest LabLink@939893 10:01 27-Dec-2016

Report of Analysis

OSMW-4D DUP Client Sample ID: Lab Sample ID: JC32876-4

Matrix:

AQ - Ground Water

Method: Project:

SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/01/16

Q

Date Received: 12/05/16

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	8G979.D	1	12/08/16	RK	12/08/16	OP99038	G8G37
ln an							

Kun	# 4
-----	-----

	Initial Volume	Final Volume
Run #1	1000 ml	10.0 ml
Run #2		

CAS No.	Compound	Result	RL	MDL	Units
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	81%		26-13	32%
877-09-8	Tetrachloro-m-xylene	85%		26-13	32%
2051-24-3	Decachlorobiphenyl	48%		10-13	18%
2051-24-3	Decachlorobiphenyl	49%		10-13	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID:	EB120116
Lab Sample ID:	JC32876-5

Matrix: AQ - Equipment Blank Method:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/01/16 Date Received: 12/05/16

Percent Solids: n/a

Q

Project:

File ID DF Analyzed Ву Prep Date Prep Batch **Analytical Batch** OP99012 EP4872 Run #1 P109751.D 1 12/13/16 RL 12/07/16

Run #2

	Initial Volume	Final Volume
Run #1	950 ml	1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
100-52-7	Benzaldehyde	ND	5.3	0.30	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
4165-60-0 321-60-8	Nitrobenzene-d5 2-Fluorobiphenyl	51% 63%		32-13 35-13	
1718-51-0	Terphenyl-d14	91%		10-13	26%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID:	EB120116
Lah Sample ID:	IC32876-5

Matrix: AQ - Equipment Blank Method:

SW846 8270D BY SIM SW846 3510C

Date Sampled: 12/01/16 Date Received: 12/05/16

Percent Solids:

Project: BMSMC, Building 5 Area, PR

File ID Analyzed Ву Prep Date Prep Batch **Analytical Batch** DF Run #1 3P57134.D 1 12/10/16 SG 12/07/16 OP99012A E3P2648

RL

MDL

Units

Q

Run #2

Initial Volume Final Volume Run #1 950 ml 1.0 ml

Compound

Run #2

CAS No.

56-55-3	Benzo(a)anthracene	ND	0.053	0.024	ug/l
91-20-3	Naphthalene	ND	0.11	0.031	ug/l
123-91-1	1,4-Dioxane	ND	0.11	0.051	ug/i
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	58%		24-1	25%
321-60-8	2-Fluorobiphenyl	62%		19-1	27%
1718-51-0	Terphenyl-d14	95%		10-1	19%

Result

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:	EB120116
Lab Sample ID:	JC32876-5

Matrix:

AQ - Equipment Blank

Method: Project:

SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 12/01/16 Date Received: 12/05/16

Q

Units

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	8G980.D	1	12/08/16	RK	12/08/16	OP99038	G8G37
Run #2							

RL

MDL

Run #1 Run #2	995 ml	10.0 ml	
CAS No.	Compound	Result	:

60-57-1	Dieldrin	ND	0.010	0.0036 ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8 877-09-8	Tetrachloro-m-xylene Tetrachloro-m-xylene	82% 87%		26-132% 26-132%
2051-24-3 2051-24-3	Decachlorobiphenyl Decachlorobiphenyl	95% 94%		10-118% 10-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	EB120216
Lab Sample ID:	JC32876-6

Matrix: AQ - Equipment Blank Method:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/02/16 Date Received: 12/05/16

Percent Solids:

Q

Project:

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 P109752.D 1 12/13/16 RL 12/07/16 OP99012 EP4872 Run #2

Initial Volume Final Volume

Run #1 900 ml 1.0 ml Run #2

CAS No. Compound Result RL **MDL** Units 100-52-7 ND 5.6 0.32 Benzaldehyde ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 4165-60-0 Nitrobenzene-d5 51% 32-128% 321-60-8 2-Fluorobiphenyl 62% 35-119% 1718-51-0 Terphenyl-d14 10-126% 84%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: EB120216 Lab Sample ID: JC32876-6

Matrix: AQ - Equipment Blank

Method: SW846 8270D BY SIM SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/02/16
Date Received: 12/05/16

Percent Solids: n/a

Q

Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	3P57135.D	1	12/10/16	SG	12/07/16	OP99012A	E3P2648
Run #2							

	Initial Volume	Final Volume
Run #1	900 ml	1.0 ml
Run #2		

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.056	0.025	ug/l
91-20-3	Naphthalene	ND	0.11	0.033	ug/l
123-91-1	1,4-Dioxane	ND	0.11	0.054	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	58%		24-1	25%
321-60-8	2-Fluorobiphenyl	61%		19-1	27%
1718-51-0	Terphenyl-d14	89%	10-119%		19%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

RK

Page 1 of 1

Client Sample ID:	EB120216
Lab Sample ID:	JC32876-6

File ID

8G981.D

Matrix: Method:

-6 AQ - Equipment Blank

DF

1

SW846 8081B SW846 3510C

Date Sampled: 12/02/16

Date Received: 12/05/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Analyzed

12/08/16

Prep Batch Analytical Batch OP99038 G8G37

Run #1 Run #2

	Initial Volume	Final Volume
Run #1	995 ml	10.0 ml

Compound

Run #2

CAS No.

MDL Result RL Units Q

Prep Date

12/08/16

60-57-1 ND 0.010 Dieldrin 0.0036ug/l

CAS No. Surrogate Recoveries Run#1 Run#2 Limits 877-09-8 Tetrachloro-m-xylene 67% 26-132% 877-09-8 Tetrachloro-m-xylene 70% 26-132% 2051-24-3 Decachlorobiphenyl 80% 10-118% 2051-24-3 Decachlorobiphenyl 78% 10-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	OSMW-2D
Lab Sample ID:	JC32876-7

AQ - Ground Water Matrix:

SW846 8270D SW846 3510C Method: Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/02/16 12/05/16 Date Received:

Percent Solids:

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	P109753.D	1	12/13/16	RL	12/07/16	OP99012	EP4872
Dun #2							

Run #1 Run #2	Initial Volume 900 ml	Final Volume 1.0 ml	e				
CAS No.	Compound		Result	RL	MDL	Units	Q
100-52-7	Benzaldehyde		ND	5.6	0.32	ug/l	
123-91-1	1,4-Dioxane		17.0	1.1	0.73	ug/I	
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	J.im	its	

Surrogate Recoveries	Run# I	Run# 2	Limits
Nitrobenzene-d5	51%		32-128%
2-Fluorobiphenyl	63%		35-119%
Terphenyl-d14	81%		10-126%
	Nitrobenzene-d5 2-Fluorobiphenyl	Nitrobenzene-d5 51% 2-Fluorobiphenyl 63%	Nitrobenzene-d5 51% 2-Fluorobiphenyl 63%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Ву

SG

Prep Date

12/07/16

Page 1 of 1

Client Sample ID: OSMW-2D Lab Sample ID: JC32876-7

File ID

3P57136.D

Matrix: Method: AQ - Ground Water

DF

1

SW846 8270D BY SIM SW846 3510C

Analyzed

12/10/16

Date Sampled: Date Received:

Q

12/02/16 12/05/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch **Analytical Batch** OP99012A E3P2648

Run #1 Run #2

Initial Volume Final Volume Run #1 900 ml 1.0 ml

Run #2

CAS No. Compound RL MDL Units Result 56-55-3 Benzo(a)anthracene ND 0.056 0.025 ug/l 91-20-3 Naphthalene ND 0.11 0.033ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 4165-60-0 Nitrobenzene-d5 57% 24-125% 321-60-8 2-Fluorobiphenyl 63% 19-127% 1718-51-0 Terphenyl-d14 84% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

RK

Prep Date

12/08/16

Page 1 of 1

Client Sample ID:	OSMW-2D
Lab Sample ID:	IC32876-7

File ID

8G982.D

Matrix: Method:

AQ - Ground Water

SW846 8081B SW846 3510C

DF

1

Date Sampled: 12/02/16 Date Received: 12/05/16

Q

Project:

BMSMC, Building 5 Area, PR

Analyzed

12/08/16

Percent Solids:

Prep Batch **Analytical Batch** OP99038 G8G37

Run #1 Run #2

	Initial Volume	Final Volume
Run #1	990 ml	10.0 ml
la		

Run #2

CAS No.	Compound	Result	RL	MDL	Units	
60-57-1	Dieldrin	ND	0.010	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
877-09-8	Tetrachloro-m-xylene	88%		26-13	32%	
877-09-8	Tetrachloro-m-xylene	92%	26-132%			
2051-24-3	Decachlorobiphenyl	87%	10-118%			
2051-24-3	Decachlorobiphenyl	90%	10-118%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Limits Rec/RPD

10-164/30 10-119/31

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC32876

Account:

AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

|--|

The QC reported here applies to the following samples:

JC32876-1, JC32876-2, JC32876-3, JC32876-4, JC32876-5, JC32876-6, JC32876-7

		JC32876-7	Spike	MS	MS	Spike	MSD	MSD	
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD
100-52-7	Benzaldehyde	ND	54.1	33.9	63	52.6	32.0	61	6
123-91-1	1,4-Dioxane	17.0	54.1	37.4	38	52.6	36.9	38	1
CAS No.	Surrogate Recoveries	MS	MSD	JC	32876-7	Limits			
367-12-4	2-Fluorophenol	56%	54%			14-88%)		
4165-62-2	Phenol-d5	39%	36%			10-1109	%		
118-79-6	2,4,6-Tribromophenol	87%	85%			39-1499	%		
4165-60-0	Nitrobenzene-d5	68%	68%	51	%	32-1289	%	, ef	MARA
321-60-8	2-Fluorobiphenyl	75%	74%	63	%	35-1199	%	SE I	
1718-51-0	Terphenyl-d14	83%	81%	81	%	10-1269	%	3	

Method: SW846 8270D

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC32876

Account:

AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample OP99012A-MS OP99012A-MSD JC32876-7	File ID 3P57156.D 3P57123.D 3P57136.D	DF 1 1	Analyzed 12/11/16 12/09/16 12/10/16	By SG SG SG	Prep Date 12/07/16 12/07/16 12/07/16	Prep Batch OP99012A OP99012A OP99012A	Analytical Batch E3P2649 E3P2648 E3P2648
		-					

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

JC32876-1, JC32876-2, JC32876-3, JC32876-4, JC32876-5, JC32876-6, JC32876-7

CAS No.	Compound	JC32876-7 ug/l Q	Spike ug/l	MS MS ug/l %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
56-55-3 91-20-3 123-91-1	Benzo(a)anthracene Naphthalene 1,4-Dioxane	ND ND 15.7 E	1.05 1.05 1.05	0.855 81 0.595 57 12.4 -314*	1.08 1.08 a 1.08	1.09 0.766 15.1	101 71 -56* a	0 3 20	25-135/33 23-140/36 20-160/30
CAS No.	Surrogate Recoveries	MS	MSD	JC32876-7	Limits				
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	52% 54% 66%	64% 66% 97%	57% 63% 84%	24-125% 19-127% 10-119%		39EN	DEMBO	

⁽a) Outside control limits due to high level in sample relative to spike amount.

^{* =} Outside of Control Limits.

Limits Rec/RPD

42-161/36

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC32876

Account: AMAN'

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, PR

	Sample OP99038-MS OP99038-MSD IC32876-7	File ID 8G983.D 8G984.D 8G982.D	DF 1 1	Analyzed 12/08/16 12/08/16 12/08/16	By RK RK RK	Prep Date 12/08/16 12/08/16 12/08/16	Prep Batch OP99038 OP99038 OP99038	Analytical Batch G8G37 G8G37 G8G37
--	--	--	--------------	--	----------------------	---	---	---

The QC reported here applies to the following samples:

Method: SW846 8081B

JC32876-1, JC32876-2, JC32876-3, JC32876-4, JC32876-5, JC32876-6, JC32876-7

CAS No.	Compound	JC32876-7 ug/l Q	Spike ug/l		MS %	Spike ug/l	MSD ug/l	MSD %	RPD
60-57-1	Dieldrin	ND	0.5	0.45 9	90	0.5	0.44	88	2
CAS No.	Surrogate Recoveries	MS	MSD	JC328	876-7	Limits			
877-09-8 877-09-8 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl	52% 53% 75%	52% 53% 74% 72%	88% 92% 87% 90%		26-1329 26-1329 10-1189 10-1189	6 6	39	1000
2051-24-3	Decachlorobiphenyl	73%	1270	90%		10-1187	0	1 =5	" dael I

^{* =} Outside of Control Limits.

ACCUTEST			СНА	IN (OF (CUST	ro	DΥ					,					P#	\GF	:	0	F
A1 1	لعرف										H EO I	<i>p)</i>	135	<u>ب</u>			-					<u>' — </u>
NJ	50		TEL 712	5 Roar (-129-020)	30, Dayto	m, NJ 188 715-359-14	(0) (00) T45	0.0			7	77	49	04	<u>55</u>	<u> 13</u>	┺.	Order Ca	_			
Client / Reporting Information	TOTALTIE SERVICE	300-30	i Deelee	t Inform	e accusient	2000	NAC SE	Charles and	ETR. 2074	on or 153 at 1		-						ral Jose #	Ĵ		28	76
Company Name	Project Name		riojec	r initim	HOUSE	437702	0,000	-744	500	Daves:	2 28	∰ Re	questi	id An	Llysis	see	TEST	CODE	sheet)	_	Tree	Matrix Codes
Anderson Mulholland & Associates	4th C 2016	Groundwater Sa	moline . O	Halta Mi	-10							-								1		DW Darring Weter
Stress Address	Street		maning = O	7.510.0 40	en construction	eleccy - unit	al a	res man	-	artines in	100		i									GW - Grount Nater
2700 Westchester Avenue, Suite 417	Zip City		State	Billing	Informati	ion et ette	roni fe	rom Rep	ort to)				-	1				1				SW Surface Water
Purchage_ NY	10577 Humacao		PR	Lompe	ny Nario								ļ		ļ	1	1		1			SO-Sall SL Sludge
Protect Contact	E-mail Project is			Street /	-007HH 6		-				-					1		1	1	1		SED Sestment Of Oil
Terry Taylor Prone F	FALL CONTRACTOR										1						1			ŀ		LIQ Other Louid AIR - Air
914-251-0400	Cherri Purcha	se Order #		U.Eq.		_	5	lair		Z£	7			ŀ			1		1			SOL - Other Sold WP - Wipe
Sampler(s) Nathers)	Phone # Project Mana)mr		Attenton	r.							1			2							FB-Freed Blank 68-Equipment Blank
	Terry Taylo	e									N X	Ę	ğ	_	1 5	1			ž.			RB. Rinse Blank TB Trip Blank
1 1			Calvertor		{			Number o) property	ed Bollets	그 중	W.	🖁	BA	퓜	1		1	780			
ferrer Field ID / Point of Collection	MEDHICI VIAI		Tires	Banqued tr	Laura .	if of botton	ş ğ	100	NO.	000	B8270SIMMAP	BSIM+BANTH	BSIM+14DIOX	BAZTOBAH	P6061D/ELDRIN	ALK	XFES	2	VRSK175CH4	XM030	504, 5	
1 FB 120116		12-1-16	1205	NR	FR	9	Z 2	1 5 5		1212		1 5	100	-	77	₹	2	3	5	Ř	Š	LAB USE ONLY
2 OSMW-3D		17-1-16	1215	ME	1		+	++	3		-IX-	$ \lambda $	X	X	X	_	_	<u>L.</u> i				E73
3 05 MW-4D		12-116	1715	NE	GW	3		┿	3		12	ΙX	У,	X,	X							E 84
4 USMW-4D D	112	12-1-16	1524	TO PL	CW.	3	-		3		ŢŻ	1	X	X	X	<u></u>						
5 EB120116		12-1-16	1545	NE	2N	3			3		11	X		X	X				<u> </u>			
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		12-1-16	1642	NR	E6	3	+	1-1-	3	\bot	X		X	X	X		L				\Box	
- 1 - 0 1 - 0 - 1 - 0		12-2-16	<u>950</u>	JV	Eβ	3	4	11	3		$ \mathbf{X} $	لهرا	X.	X	X							
1 05MW-20		12-2-16	15-10	NR	CM.	3	1	Ш	2		X	LV	VI	X	K							
	15	12-2-16	1230		GW	3_	\perp	Ш.	3		TX	X	4	X	$ \overline{X} $						\neg	
VOSMW-2DM	50.	12-2-16	1258	NR	GN	3			2		TZI	K	X	χ	X					1		
		<u> </u>					T	\sqcap						-							-	
		- 11157					T	\prod													\neg	
	TERM PRESE	No see	SW MESS	1380	Victory.	266	ě à	1. 6	4 4	2 7 2	101	Ore	10.00	ĮĮ.	37%	100	Mark.	Orb.	5/04	Sella .	45.8	HAD HELD
Turnergund Time (Business days) (X) Std. 18 Business Days		DATE PROPERTY	#Selling.	-				sple int			culture	Leen.	- M	2756	LUV-	Come	nonts /	Special	Institut	tons	10000	AND PARTIES.
Std. 10 Business Days by Contract on	Approved By the	termed PW; "Slave-				lai "A" (Lo: lai "O" (Lo:				YASP Cated YASP Cated		1										
10 Day MUSH						Level 344)				tate Forms	hard m	ł	_	_								
S Day RUSH 3 Day EMENGENCY					U Reduce					DO Formal		_										
2 Day EMEMBERGY				П.	Commenc)	al TCT Commercia		Sen.or		ther	-											
1 Day EmantianCY Emergency & Rush Till cata invalidate VIA Latera						Commercial	-	Results	GC St	utritary												
	s	emple Custody mu	it be docum	ented be	low each	N. Anducer Line sam	t = Re	suss + C change	C Surv	nary • Paras	e Raw sur	u Nurler c	feliven	,			23 hr	WHICH	r. Friend and	and the	7 E	Park with circus
We Talata	22-16 1600	Received By:	160	/				abod By:	-		/			John The	91.	7	lace-se		1		4	A COM SERVING
Reimpurshed (f) Europhy:	Table Time	Received By:	1	_		2	-	shed liv		= DA				12-51 mt out	7/6_		2		1			
Reinoushed by:	Doty Time	Received By:				- 4											lacoved L	By:				
5		s				2	74	775	, 27	6,277	Imact Not intact	-		0	appl-oats	44			0111	1.1	Caster Ti	0 19

JC32876: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

JC32876

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

9

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Nine (9) samples were analyzed for Benzaldehyde following method SW846-8270D; Selected PAHs and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 –Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

 Initial and continuing calibration verifications meet the method and guidance document required performance criteria except in the cases described in the Data Review Worksheet.

No closing calibration verification included in data package. No action taken, professional judgment.

QC samples were not validated.

2. MS/MSD % recoveries and RPD within laboratory control limits except for the cases described in the Data Review Worksheet. MS/MSD % recovery for 1,4-Dioxane outside laboratory control limits. No action taken, MS/MSD % recoveries outside control limits due to high level in sample relative to amount spiked.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

January 12, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC32876-1

Sample location: BMSMC Building 5 Area

Sampling date: 1-Dec-16

Matrix: AQ - Field Blank Water

METHOD: 8270D

Analyte Name	Result	Units C	Dilution Factor	Lab Flag	Validation	Reportable
Benzaldehyde	5.0	ug/l	1	-	U	Yes

METHOD: 8270D (SIM)

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzo(a)anthracene	0.050	ug/l	1	•	U	Yes
Naphthalene	0.10	ug/l	1	-	U	Yes
1,4-Dioxane	0.10	ug/l	1	-	U	Yes

Sample ID: JC32876-2

Sample location: BMSMC Building 5 Area

Sampling date: 1-Dec-16

Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzaldehyde	5.3	ug/l	1	-	U	Yes

METHOD: 8270D (SIM)

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzo(a)anthracene	0.050	ug/l	1	-	U	Yes
Naphthalene	0.10	ug/l	1	-	U	Yes
1,4-Dioxane	4.13	ug/l	1	•	-	Yes

Sample ID: JC32876-3

Sample location: BMSMC Building 5 Area

Sampling date: 1-Dec-16

Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Benzaldehyde	5.1	ug/l	1	-	U	Yes
1,4-Dioxane	17.9	ug/l	1	-	-	Yes

METHOD: 8270D (SIM)

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzo(a)anthracene	0.051	ug/l	1	-	U	Yes
Naphthalene	0.10	ug/l	1	•	U	Yes

Sample ID: JC32876-4

Sample location: BMSMC Building 5 Area

Sampling date: 1-Dec-16

Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzaldehyde	5.0	ug/l	1	-	U	Yes
1,4-Dioxane	17.8	ug/l	1	-	-	Yes

METHOD: 8270D (SIM)

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Benzo(a)anthracene	0.050	ug/l	1	-	U	Yes
Naphthalene	0.10	ug/l	1	-	U	Yes

Sample ID: JC32876-5

Sample location: BMSMC Building 5 Area

Sampling date: 1-Dec-16

Matrix: AQ - Equipment Blank

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzaldehyde	5.0	ug/l	1	-	U	Yes

METHOD: 8270D (SIM)

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzo(a)anthracene	0.053	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	•	U	Yes
1,4-Dioxane	0.11	ug/l	1	-	U	Yes

Sample ID: JC32876-6

Sample location: BMSMC Building 5 Area

Sampling date: 2-Dec-16

Matrix: AQ - Equipment Blank

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzaldehyde	5.0	ug/l	1	-	U	Yes

METHOD: 8270D (SIM)

	,	*				
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzo(a)anthracene	0.056	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	0.11	ug/l	1	_	U	Yes

Sample ID: JC32876-7

Sample location: BMSMC Building 5 Area

Sampling date: 2-Dec-16

Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzaldehyde	5.0	ug/l	1	-	U	Yes
1,4-Dioxane	17.0	ug/l	1	-	-	Yes

METHOD: 8270D (SIM)

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzo(a)anthracene	0.056	ug/i	1	-	U	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes

Sample ID: JC32876-7MS

Sample location: BMSMC Building 5 Area

Sampling date: 2-Dec-16

Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzaldehyde	33.9	ug/l	1	-	-	Yes
1,4-Dioxane	37.4	ug/l	1	-	-	Yes

METHOD: 8270D (SIM)

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzo(a)anthracene	0.855	ug/l	1	•	•	Yes
Naphthalene	0.595	ug/i	1	-	-	Yes
1,4-Dioxane	12.4	ug/i	1	-	•	Yes

Sample ID: JC32876-7MSD

Sample location: BMSMC Building 5 Area

Sampling date: 2-Dec-16

Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzaldehyde	32.0	ug/l	1	-	-	Yes
1,4-Dioxane	36.9	ug/l	1	-	-	Yes

METHOD: 8270D (SIM)

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzo(a)anthracene	1.090	ug/l	1	-	-	Yes
Naphthalene	0.766	ug/l	1	-	-	Yes
1,4-Dioxane	15.1	ug/l	1	-	•	Yes

	Project Number:_JC32876
	Date:December_1-2,_2016
	Shipping Date:December_2,_2016
	EPA Region: 2
REVIEW OF SEMIVOLATILE O	DRGANIC PACKAGE
The following guidelines for evaluating volatile organization actions. This document will assist the remake more informed decision and in better serving results were assessed according to USEPA data following order of precedence: EPA Hazardous V 2015 – Revision 0. Semivolatile Data Validation. The Quon the data review worksheets are from the prima noted.	eviewer in using professional judgment to the needs of the data users. The sample a validation guidance documents in the Vaste Support Section, SOP HW-35A, July C criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance daincluded:	data package received has been ta summarized. The data review for SVOCs
Lab. Project/SDG No.:JC32876 No. of Samples:9_SIM/9_SCAN	
Trip blank No.:	
Field blank No.: JC32876-1	
Equipment blank No.:JC32876-5;_JC32876-6_ Field duplicate No.:JC32876-3/JC32876-4_	
rieid dupiicate No	
X Data Completeness X Holding Times	X Laboratory Control SpikesX Field Duplicates
X GC/MS Tuning	X Calibrations
X Internal Standard Performance	X Compound Identifications
X Blanks X Surrogate Recoveries	X Compound QuantitationX Quantitation Limits
X Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	Quantitation Limits
_Overall Comments:_SVOCs_TCL_special_list_(Benzald 8270D;PAHS_and_1,4-Dioxane_analyzed_by_method	
Definition of Qualifiers:	
J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetect	
Reviewer: Calail Want	
Date:January_11,_2017	
DateJanuary_11,_2011	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACT	ED	DATE RECEIVED
_			
-			
	,		
	1		
	1		
	1		
		1	
			<u> </u>
			7
			-

All criteria were met _	_X	
Criteria were not met		
and/or see below		

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	рН	ACTION
All samples extra	acted and analy	zed within method recommer	ided h	nolding time.
		3.00		

Cooler temperature	Criteria: 4 + 2 ºC): 3.3°C	

<u>Actions</u>

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

			Action		
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds	
	No	≤7 days (for extraction) ≤40 days (for analysis)			
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
Aqueous	Yes	≤ 7 days (for extraction) ≤ 40 days (for analysis)	No qualification		
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	υJ	
	Yes/No	Grossly Exceeded	J	UJ or R	
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use professional judgment		
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)		Use professional judgment	
	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qualification		
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	UJ	
	Yes/No	Grossly Exceeded	J	UJ or R	

All criteria were metX_	
Criteria were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standa	rd
tuning QC limits	

_X__ The DFTPP performance results were reviewed and found to be within the specified criteria.

_X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

List	the	samples	affected:
			_

Actions:

- If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were met _	_X_	70
Criteria were not met		
and/or see below		

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	10/18/16_(SIM)
Instrument ID numbers:	GCMS3P
Matrix/Level:	Aqueous/low
Date of initial calibration:_1 Instrument ID numbers:	
Matrix/Level:	
Date of initial calibration:_1 Instrument ID numbers: Matrix/Level:	GCMSP

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial and initial calibration verification meets the method and guidance validation document					
performance criteria.					

Note:

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

Cuttout	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification	

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
1,4-Dioxane	0.010	40.0	± 40.0	± 50.0
Benzaldehyde	0.100	40.0	± 40.0	± 50.0
Phenol	0.080	20.0	±20.0	±25.0
Bis(2-chloroethyl)ether	0.100	20.0	± 20.0	± 25.0
2-Chlorophenol	0.200	20.0	± 20.0	±25.0
2-Methylphenol	0.010	20.0	± 20.0	±25.0
3-Methylphenol	0.010	20.0	± 20.0	± 25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	±25.0	± 50.0
Acetophenone	0.060	20.0	±20.0	±25.0
4-Methylphenol	0.010	20.0	± 20.0	±25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	± 25.0
Hexachloroethane	0.100	20.0	±20.0	±25.0
Nitrobenzene	0.090	20.0	±20.0	± 25.0
Isophorone	0.100	20.0	± 20.0	±25.0
2-Nitrophenol	0.060	20.0	±20.0	±25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	± 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	± 20.0	± 25.0
2,4-Dichlorophenol	0.060	20.0	± 20.0	±25.0
Naphthalene	0.200	20.0	± 20.0	± 25.0
4-Chloroaniline	0.010	40.0	± 40.0	± 50.0
Hexachlorobutadiene	0.040	20.0	± 20.0	±25.0
Caprolactam	0.010	40.0	± 30.0	± 50.0
4-Chloro-3-methylphenol	0.040	20.0	± 20.0	± 25.0
2-Methylnaphthalene	0.100	20.0	± 20.0	±25.0
Hexachlorocyclopentadiene	0.010	40.0	± 40.0	± 50.0
2,4,6-Trichlorophenol	0.090	20.0	± 20.0	±25.0
2,4,5-Trichlorophenol	0.100	20.0	± 20.0	± 25.0
1,1'-Biphenyl	0.200	20.0	± 20.0	± 25.0

	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	±20.0	±25.0
2-Nitroaniline	0.060	20.0	±25.0	± 25.0
Dimethylphthalate	0.300	20.0	±25.0	±25.0
2,6-Dinitrotoluene	0.080	20.0	± 20.0	± 25.0
Acenaphthylene	0.400	20.0	±20.0	± 25.0
3-Nitroaniline	0.010	20.0	±25.0	± 50.0
Acenaphthene	0.200	20.0	± 20.0	± 25.0
2,4-Dinitrophenol	0.010	40.0	± 50.0	± 50.0
4-Nitrophenol	0.010	40.0	± 40.0	± 50.0
Dibenzofuran	0.300	20.0	± 20.0	± 25.0
2,4-Dinitrotoluene	0.070	20.0	±20.0	± 25.0
Diethylphthalate	0.300	20.0	±20.0	± 25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	±20.0	± 25.0
4-Chlorophenyl-phenylether	0.100	20.0	± 20.0	± 25.0
Fluorene	0.200	20.0	± 20.0	± 25.0
4-Nitroaniline	0.010	40.0	±40.0	± 50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	±30.0	± 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	± 20.0	± 25.0
N-Nitrosodiphenylamine	0.100	20.0	± 20.0	± 25.0
Hexachlorobenzene	0.050	20.0	± 20.0	±25.0
Atrazine	0.010	40.0	±25.0	± 50.0
Pentachlorophenol	0.010	40.0	± 40.0	± 50.0
Phenanthrene	0.200	20.0	± 20.0	± 25.0
Anthracene	0.200	20.0	± 20.0	± 25.0
Carbazole	0.050	20.0	± 20.0	±25.0
Di-n-butylphthalate	0.500	20.0	± 20.0	± 25.0
Fluoranthene	0.100	20.0	± 20.0	± 25.0
Pyrene	0.400	20.0	±25.0	± 50.0
Butylbenzylphthalate	0.100	20.0	± 25.0	± 50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
3,3'-Dichlorobenzidine	0.010	40.0	± 40.0	± 50.0
Benzo(a)anthracene	0.300	20.0	± 20.0	±25.0
Chrysene	0.200	20.0	± 20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	± 25.0	± 50.0
Di-n-octylphthalate	0.010	40.0	± 40.0	± 50.0
Benzo(b)fluoranthene	0.010	20.0	± 25.0	± 50.0
Benzo(k)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	± 20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	±25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	±30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	± 20.0	± 50.0
Naphthalene	0.600	20.0	±25.0	± 25.0
2-Methylnaphthalene	0.300	20.0	± 20.0	± 25.0
Acenaphthylene	0.900	20.0	± 20.0	±25.0
Acenaphthene	0.500	20.0	±20.0	± 25.0
Fluorene	0.700	20.0	±25.0	± 50.0
Phenanthrene	0.300	20.0	±25.0	± 50.0
Anthracene	0.400	20.0	±25.0	± 50.0
Fluoranthene	0.400	20.0	± 25.0	± 50.0
Pyrene	0.500	20.0	±30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	±25.0	± 50.0
Chyrsene	0.400	20.0	±25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	±25.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	± 40.0	± 50.0
Dibenzo(a,h)anthracene	0.010	25.0	± 40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	±40.0	± 50.0

Pentachlorophenol	0.010	40.0	± 50.0	±50.0
Deuterated Monitoring Compou	nds			

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D1	Closing Maximum %D
1,4-Dioxane-d ₈	0.010	20.0	±25.0	± 50.0
Phenol-ds	0.010	20.0	± 25.0	±25.0
Bis-(2-chloroethyl)ether-d ₈	0.100	20.0	± 20.0	±25.0
2-Chlorophenol-d ₄	0.200	20.0	± 20.0	±25.0
4-Methylphenol-d ₈	0.010	20.0	±20.0	±25.0
4-Chloroaniline-d ₄	0.010	40.0	±40.0	± 50.0
Nitrobenzene-d₅	0.050	20.0	± 20.0	±25.0
2-Nitrophenol-d ₄	0.050	20.0	± 20.0	±25.0
2,4-Dichlorophenol-d3	0.060	20.0	± 20.0	±25.0
Dimethylphthalate-d ₆	0.300	20.0	± 20.0	±25.0
Acenaphthylene-d ₈	0.400	20.0	±20.0	±25.0
4-Nitrophenol-d ₄	0.010	40.0	±40.0	± 50.0
Fluorene-d ₁₀	0.100	20.0	± 20.0	± 25.0
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	± 30.0	± 50.0
Anthracene-d ₁₀	0.300	20.0	±20.0	± 25.0
Pyrene-d ₁₀	0.300	20.0	±25.0	± 50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	± 20.0	± 50.0
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	± 25.0	± 50.0
2-Methylnaphthalene-d ₁₀ (SIM)	0.300	20.0	± 20.0	±25.0

^{&#}x27;If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were met _		
Criteria were not met		
and/or see below	_X	_

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	10/18/16_(SIM)
Date of initial calibration verificat	tion (ICV):10/19/16
Date of continuing calibration ve	rification (CCV):_12/09/16;_12/11/16
Date of closing CCV:	•
Instrument ID numbers:	GCMS3P
	Aqueous/low
Date of initial calibration:	11/03/16_(Scan)
Date of initial calibration verificat	tion (ICV):_11/03/16
	rification (CCV):
Date of closing CCV:	<u> </u>
Instrument ID numbers:	GCMSP
	Aqueous/low
Date of initial calibration:	11/28-29/16_(Scan)
Date of initial calibration verificat	tion (ICV):_11/29-30/16
Date of continuing calibration ve	rification (CCV):_12/08/16;_12/13/16
Date of closing CCV:	•
Instrument ID numbers:	GCMSP
Matrix/Level:	Aqueous/low

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, <u>%D,</u> r	COMPOUND	SAMPLES AFFECTED
GCMSP				
12/11/16	cc2579-0.5	-24.6 %	Benzo(a)anthracene	QC

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except for the cases described in this document.

No action taken for QC samples.

No closing calibration verification included in data package. No action taken, professional judgment.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Criteria for Opening CCV	Criteria for Closing CCV -	Ac	tion
Citteria to Opening CCV	Criteria for Closing CCV	Detect	Non-detect
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	J	Ωĵ
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification

All criteria were met	_X	_
Criteria were not met		
and/or see below		_

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

Note:

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana	lytes_detected_i	n_method_bla	nks	
Field/Equipmer	n <u>t</u> /Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana	lytes_detected_i	n_the_field/eq	uipment_blanks_analy	zed_with_this_data_package

All criteria were met	x
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL	Use professional judgment
		< CRQL	Report at CRQL and qualify as non-detect (U)
Method,	≥CRQL	≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
TCLP/SPLP LEB, Field		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
			l 		

All criteria were met_	_X_	
Criteria were not met		
and/or see below		

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Action Criteria Detect Non-detect %R < 10% (excluding DMCs with 10% as a lower J-R acceptance limit) $10\% \le \%$ R (excluding DMCs with 10% as a lower J-UJ acceptance limit) < Lower Acceptance Limit Lower Acceptance limit \leq %R \leq Upper Acceptance Limit No qualification No qualification %R > Upper Acceptance Limit No qualification

Table 7. DMC Actions for Semivolatile Analysis

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

Matrix:Groundwater		
SAMPLE ID	SURROGATE COMPOUND	ACTION
	a_in_all_samples_analyzedNonde_within_laboratory_recovery_limits.	

Note:

⁽a) Outside control limits due to matrix interference.

⁽b) Outside in house control limits biased low. The results confirmed by re-extraction outside the holding time.

Table 8. Semivolatile DMCs and the Associated Target Analytes

1,4-Dioxane-d ₈ (DMC-1) Phenol-d ₅ (DMC-2) Bis(2-Chloroethyl) ether-d ₈				
1,4-Dioxane-d ₈ (DMC-1)	Phenol-d ₅ (DMC-2)	(DMC-3)		
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether		
1,, 5,0,0,0,0	Phenol	2,2'-Oxybis(1-chloropropane)		
		Bis(2-chloroethoxy)methane		
2-Chlorophenol-d ₄ (DMC-4)	4-Methylphenol-d ₈ (DMC-5)	4-Chloroaniline-d4 (DMC-6)		
2-Chlorophenol	2-Methylphenol	4-Chloroaniline		
2-Cinorophenor	3-Methylphenol	Hexachlorocyclopentadiene		
	4-Methylphenol	Dichlorobenzidine		
	2,4-Dimethylphenol	Diemorocazanie		
Nisonal Control of		2.4 Dishlamakanal d. (DMC 0)		
Nitrobenzene-d ₅ (DMC-7)	2-Nitrophenol-d4 (DMC-8)	2,4-Dichlorophenol-d ₃ (DMC-9)		
Acetophenone	Isophorone	2,4-Dichlorophenol		
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene		
Hexachloroethane		Hexachlorocyclopentadiene		
Nitrobenzene		4-Chloro-3-methylphenol		
2,6-Dinitrotoluene		2,4,6-Trichlorophenol		
2,4-Dinitrotoluene		2,4,5-Trichlorophenol		
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene		
, in the second		*Pentachlorophenol		
		2,3,4,6-Tetrachlorophenol		
Dimethylphthalate-d ₆ (DMC-10)	Acenaphthylene-da (DMC-11)	4-Nitrophenol-d, (DMC-12)		
Caprolactam	*Naphthalene	2-Nitroaniline		
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline		
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol		
Diethylphthalate	*Acenaphthylene	4-Nitrophenol		
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline		
Butylbenzylphthalate				
Bis(2-ethylhexyl) phthalate				
Di-n-octylphthalate				

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	V
*Fluoranthene	3,3'-Dichlorobenzidine	
*Pyrene	*Benzo(b)fluoranthene	
*Benzo(a)anthracene	*Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-cd)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	i i

All criteria were met _	
Criteria were not met	
and/or see below	_X

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC32876-7 Sample ID:JC32876-7_(SIM)							Matrix/l Matrix/l	_		indwater indwater
The QC reporte JC32876-1, JC				_		'6-5, JC	32876-6			6 8270D (SIM)
Compound	JC32876 ug/l	-7 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
1,4-Dioxane	15.7	Е	1.05	12.4	-314* a	1.08	15.1	-56* a	20	20-160/30

⁽a) Outside control limits due to high level in sample relative to spike amount.

Note: No action taken, MS/MSD % recoveries outside control limits due to high level in sample relative to amount spiked.

^{*} Outside control limits.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

If QC limits are not available, use limits of 70 – 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met __X__ Criteria were not met and/or see below ____

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE	ACTION
				RANGE	

Internal area meets the required criteria for batch samples corresponding to this data package.

Action:

- If an internal standard area count for a sample or blank is greater than 213.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 213% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action	
Criteria	Detect	Non-detect
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	j+	R
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	UJ
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	j-	No qualification
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification

		All criteria were metX Criteria were not met and/or see below
TARGET COM	POUND IDENTIFICATION	
Criteria:		
	Retention Times (RRTs) of reported compou Continuing Calibration Verification (CCV	
List compounds	s not meeting the criteria described above:	
Sample ID	Compounds	Actions
spectrum from	must be present in the sample spectrum. The relative intensities of these ions must as sample spectra (e.g., for an ion with an about the corresponding sample ion abundance must be seen that greater than 10% in the sample ion.	ng CCV or mid-point standard from initial frum at a relative intensity greater than 10% gree within ±20% between the standard and bundance of 50% in the standard spectrum,
List compounds	s not meeting the criteria described above:	
Sample ID	Compounds	Actions
_ldentified_con	npounds_meet_the_required_criteria	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

List TICs

Sample ID	Compound	Sample ID	Compound
	•		
			<u> </u>
			100

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX	
Criteria were not met	
and/or see helow	

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Action		
Criteria	Detects	Non-detects	
%Solids < 10.0%	Use professional judgment	Use professional judgment	
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment	
%Solids > 30.0%	No qualification	No qualification	

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
	5	
1,5		
To the same of the		
- T. C.		1000
Since of the same		

	All criteria were metX Criteria were not met and/or see below
FIELD DUPLICATE PRECISION	
Sample IDs:JC32876-3/JC32876-4	Matrix:Groundwater

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
Field duplicate and	alvzed as	part of this data pa	ckage. RPD within the	require	f quidance document
criteria < 50 % for				roquiice	galdanice accument
		_			

Action:

			Criteria were not met and/or see below
OTHER	RISSUES		
A.	System Perform	ance	
List san	nples qualified ba	sed on the degradation of system	performance during simple analysis:
Sample		Comments	Actions
Action:			
during	sample analyses		nined that system performance has degraded y Program COR any action as a result of cted the data.
B.	Overall Assessm	ent of Data	
List san	nples qualified ba	sed on other issues:	
Sample		Comments	Actions
_No_otl	her_issues_that_	required_the_need_to_qualify_the	_dataResults_are_valid_and_can_be_used n_below
Note:			

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results

EXECUTIVE NARRATIVE

SDG No:

JC32876

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8081B

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Nine (9) samples were analyzed for selected pesticides (Dieldrin) following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence Hazardous Waste Support Section SOP No. HW-36A, Revision O, June, 2015. SOM02.2. Pesticide Data Validation. The QC criteria and data validation actions listed on the data review worksheets are

from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Initial and initial calibration verification within the guidance document performance criteria. Continuing calibration % differences meet the performance criteria in the two columns. Final calibration verification not

included in data package. No action taken, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

January 11, 2017

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC32876-1

Sample location: BMSMC Building 5 Area

Sampling date: 1-Dec-16

Matrix: AQ - Field Blank Water

METHOD: 8081B

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Dieldrin 0.010 ug/l 1 - U Yes

Sample ID: JC32876-2

Sample location: BMSMC Building 5 Area

Sampling date: 1-Dec-16

Matrix: Groundwater

METHOD: 8081B

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Dieldrin 0.010 ug/l 1 - U Yes

Sample ID: JC32876-3

Sample location: BMSMC Building 5 Area

Sampling date: 1-Dec-16

Matrix: Groundwater

METHOD: 8081B

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Dieldrin 0.010 ug/l 1 - U Yes

Sample ID: JC32876-4

Sample location: BMSMC Building 5 Area

Sampling date: 1-Dec-16

Matrix: Groundwater

METHOD: 8081B

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Dieldrin 0.010 ug/l 1 - U Yes

Sample ID: JC32876-5

Sample location: BMSMC Building 5 Area

Sampling date: 1-Dec-16

Matrix: AQ - Equipment Blank

METHOD: 8081B

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Dieldrin 0.010 ug/l 1 - U Yes

Sample ID: JC32876-6

Sample location: BMSMC Building 5 Area

Sampling date: 2-Dec-16

Matrix: AQ - Field Blank Water

METHOD: 8081B

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Diedrin 0.010 ug/l 1 - U Yes

Sample ID: JC32876-7

Sample location: BMSMC Building 5 Area

Sampling date: 2-Dec-16

Matrix: Groundwater

METHOD: 8081B

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Diedrin 0.010 ug/l 1 - U Yes

Sample ID: JC32876-7MS

Sample location: BMSMC Building 5 Area

Sampling date: 2-Dec-16

Matrix: Groundwater

METHOD: 8081B

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Diedrin 0.45 ug/l 1 - U Yes

Sample ID: JC32876-7MSD

Sample location: BMSMC Building 5 Area

Sampling date: 2-Dec-16

Matrix: Groundwater

METHOD: 8081B

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Diedrin 0.44 ug/l 1 - U Yes

	Project/Case Number:JC32876 Sampling Date:12/01-02/2016 Shipping Date:12/02/2016 EPA Region No.:2
REVIEW OF PESTICIDE ORGA	ANIC PACKAGE
The following guidelines for evaluating volatile required validation actions. This document will assigudgment to make more informed decision and in users. The sample results were assessed according documents in the following order of precedence Ha HW-36A, Revision 0, June, 2015. SOM02.2. Pesticided data validation actions listed on the data review guidance document, unless otherwise noted.	sist the reviewer in using professional better serving the needs of the data g to USEPA data validation guidance zardous Waste Support Section SOP No. Data Validation. The QC criteria and
The hardcopied (laboratory name) _Accutest	data package received has been rized. The data review for VOCs included:
Equipment blank No.:JC32876-5;_JC32876-6	
X Matrix Spike/Matrix Spike Duplicate Overall Comments:TCL_pesticides_list_(Dieldrin)_by_	SW846-8081B
•	und not detected ed nondetect

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
4		
-		
		145-1500
	1	
6		
10		
		76
		1
		- A
	_	-
<u> </u>		

All criteria were met _	X
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	ACTION
Samples properly	preserved. All samp	les extracted and analyzed wi	thin the required criteria.
	ĺ		

Note:

<u>Criteria</u>

Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis.

Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis.

Cooler temperature (Criteria: 4 ± 2 °C): 3.3°C - OK

Actions

Qualify aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.

- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

Qualify non-aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.
- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

All criteria were met	_X	
Criteria were not met see belov	W	

GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5)

1. Resolution Check Mixture

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

2. Performance Evaluation Mixture (PEM) Resolution Criteria

Criteria

Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)?

Yes? or No?

Action

a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

Criteria

Is PEM % Resolution < 90%?

Yes? or No?

Action

- a. a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

	All criteria were met	X
Criteria	were not met see below	

3. PEM 4,4'-DDT Breakdown

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

4. PEM Endrin Breakdown

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

All criteria were metX	
Criteria were not met see below	

5. Mid-point Individual Standard Mixture Resolution -

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

Criteria

Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)?

Yes? or No?

Action

a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	11/15/16	11/15/16
Dates of initial calibration verific	ation:11/15/16	11/15/16
Dates of continuing calibration:	12/08/16;_12/09/16	12/08/16;_12/09/16_
Dates of final calibration		
Instrument ID numbers:	HP_G1530A	GC8G
Matrix/Level:	Aqueous/low	
	·	

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES AFFECTED
	ID#		RFs, %RSD, %D, r		
Initial	and init	ial calib	ration verification within	the guidance docume	nt performance criteria.
Continuing calibration % differences meet the performance criteria in the two columns. Final					
calibration verification not included in data package. No action taken, professional judgment.					

Criteria

Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015?

Yes? or No?

Actions

If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data

Criteria

Are RT Windows calculated correctly?

Yes? or No?

Action

Recalculate the windows and use the corrected values for all evaluations.

Criteria

Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC?

Yes? or No?

All criteria were met _	_X	
Criteria were not met		
and/or see below		

Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No?

Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point ICAL is performed?

Yes? or No?

Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%.

Yes? or No?

Action

- a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds.
- b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary

Continuing Calibration Checks

Criteria

Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No?

Action

- a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R).
- b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R).
- c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R).

Criteria

Is the Percent Difference (%D) within ±25.0% for the PEM sample?

Yes? or No?

Action

a. Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ± 25.0%? Yes? or No?

Action

Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

- a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

- a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

All criteria were met _	_X
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contami	ination in the bla	anks below. Hig	h and low levels blanks	must be treated separately.
CRQL concentr	ationN	/A		
Laboratory blan	ks			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_ug/L				nit_of_0.01,_0.02,_and_0.25
Field/Equipme	nt/Trip blank			CONCENTRATION
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
				ed_with_this_data_package

All criteria were met _	_X	
Criteria were not met		
and/or see below	40	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10 μ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

Blank Actions for Pesticide Analyses

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL	< CRQL	Report CRQL value with a U
		≥ CRQL	No qualification required
Method, Sulfur		< CRQL	Report CRQL value with a U
Cleanup, Instrument, Field, TCLP/SPLP	> CRQL	≥ CRQL and ≤ blank concentration	Report blank value for sample concentration with a U
		≥ CRQL and > blank concentration	No qualification required
	= CRQL	≤ CRQL	Report CRQL value with a U
		> CRQL	No qualification required
	Gross contamination	Detects	Report blank value for sample concentration with a U

All criteria were metX	
Criteria were not met	
and/or see below	

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					7010
					ACCORDING CONTRACTOR
		+			
		ļ		l 	

13

All criteria were met __X__ Criteria were not met and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix:_Aqueou	s				
Lab	Lab				
Sample ID	File ID	S1 a	S1 b	S2 a	S2 b
JC32876-1	8G974.D	81	86	55	53
JC32876-2	8G975.D	85	90	59	57
JC32876-3	8G976.D	84	88	41	41
JC32876-4	8G979.D	81	85	48	49
JC32876-5	8G980.D	82	87	95	94
JC32876-6	8G981.D	67	70	80	78
JC32876-7	8G982.D	88	92	87	90
OP99038-BS1	8G972.D	79	82	96	96
OP99038-MB1	8G971.D	80	85	74	72
OP99038-MB11	6G42160.D	64	66	50	55
OP99038-MS	8G983.D	52	53	75	73
OP99038-MSD	8G984.D	52	53	74	72
Surrogate Comp	oounds		Recov	ery Limit	ts
S1 = Tetrachlord S2 = Decachlord	•		26-132 10-118		
(a) Recovery fro	m GC signal #	1			

- (a) Recovery from GC signal #1
- (b) Recovery from GC signal #2
- (c) Outside the QC limits due matrix interference.
- (d) Outside the QC limits.

Note: Surrogate recoveries within laboratory control limits.

Actions:

- a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+).
- b. Do not qualify non-detected target compounds for surrogate recovery > 150 %.
- c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary.
- d. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify detected target compounds as biased low (J-).
- e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ).
- f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor:
 - i. Qualify detected target compounds as biased low (J-).
 - ii. Qualify non-detected target compounds as unusable (R).
- g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data.
- h. If surrogate RTs are within RT windows, no qualification of the data is necessary.
- i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes.

Summary Surrogate Actions for Pesticide Analyses

	Action*				
Criteria	Detected Target Compounds	Non-detected Target Compounds			
%R > 150%	J+	No qualification			
30% < %R < 150%	No qualification				
10% < %R < 30%	J-	UJ			
%R < 10% (sample dilution not a factor)	J	R			
%R < 10% (sample dilution is a factor)	Use profess	ional judgment			
RT out of RT window	Use professional judgment				
RT within RT window	No qualification				

 Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes.

All criteria were met	_X
Criteria were not met	
and/or see below	

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region.

NOTE: For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC32876-7MS/MSD						Matrix/L	.evel:(Groundwater	
The QC reported here applies to the following samples: JC32876-1, JC32876-2, JC32876-3, JC32876-4, JC32876-5,				6-5, JC3	2876-6,		: SW846 8081B 6-7		
JO	C32876-7	Spike	MS	MS	Spike	MSD	MSD	RPD	Limits
Dieldrin	ND	0.5	0.45	90	0.5	0.44	88	2	42-161/36

Note: MS/MSD sample analyzed with this data package. % recoveries and RPD within laboratory control limits.

Action

No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	_X
Criteria were not met	
and/or see below	

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LCS Spike Compound	Recovery Limits (%)
gamma-BHC	50 – 120
Heptachlor epoxide	50 – 150
Dieldrin	30 – 130
4,4'-DDE	50 – 150
Endrin	50 – 120
Endosulfan sulfate	50 – 120
trans-Chlordane	30 – 130
Tetrachloro-m-xylene (surrogate)	30 – 150
Decachlorobiphenyl (surrogate)	30 – 150

LCS ID	COMPOUND	% R	QC LIMIT
 _%_recovery_a	nd_RPD_within_laboratory_	_control_limits	_
		· · · · · · · · · · · · · · · · · · ·	

Action

The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria.

- a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R).
- c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS.
- d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound.
- e. If the LCS recovery is within allowable limits, no qualification of the data is necessary.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

All criteria were met	
Criteria were not met	
and/or see below N/A	

FLORISIL CARTRIDGE PERFORMANCE CHECK

NOTE: Florisil cartridge cleanup is mandatory for all extracts.

Criteria

Is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent?

Yes? or No?

N/A

Criteria

Are the results for the Florisil Cartridge Performance Check solution included with the data package?

Yes? or No?

N/A

Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows:

Action:

- a. If the Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify non-detected target compounds as unusable (R).
- e. If the Percent Recovery of 2,4,5-trichlorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results.

Note:_ No information for florisil cartridge performance check included in data package.

There is evidence tahtFlorisil cartridge was used for sample extraction/clean-up. No qualification of the data performed, professional judgment.

All criteria were met_	_N/A	
Criteria were not met		
and/or see below		

GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK

NOTE: GPC cleanup is mandatory for all soil samples.

If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria.

Action:

- a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J).
- b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R).
- c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results.

Note: No information for performance of GPC cleanup included in data package. No qualification of the data performed, professional judgment.

All criteria were met	_X	
Criteria were not met		
and/or see below		

TARGET COMPOUND IDENTIFICATION

Criteria:

- 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns?

 Yes? or No?
- 2. Is the Tetrachloro-m-xylene (TCX) RT ±0.05 minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within ±0.10 minutes of the RT determined from the initial calibration?

 Yes? or No?
- 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of ± 25.0 %?

 Yes? or No?
- 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor?

 Yes? or No?
- 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale.

 Yes? or No?
- 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale?

 Yes? or No?

 N/A
- 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB?

 Yes? or No?
- 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package.

 Yes? or No?

Action:

- a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected.
- b. Use professional judgment to assign an appropriate quantitation limit using the following guidance:
 - If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value.

- ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R).
- c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included.

Note: State in the Data Review Narrative all conclusions made regarding target compound identification.

- d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data.
- e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines.
- f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N).

GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION

NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R).

Action:

- a. If the quantitative criteria for both columns were met (\geq 5.0 ng/µL for SCPs and \geq 125 ng/µL for Toxaphene), determine whether GC/MS confirmation was performed. If it was performed, qualify the data using the following guidance:
 - i. If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C".
 - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X".

All criteria were met	_X
Criteria were not met	
and/or see below	

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC32876-7 Matrix Spike

Dieldrin

RF = 1.054

[] = (483

(48370650)(50)/(101.4 X 10⁶)(1.054)

22.6 ppb

Òk

Action:

- a. If sample quantitation is different from the reported value, qualify result as unusable (R).
- b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample.
- c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample.
- d. Results between the MDL and CRQL should be qualified as estimated (J).
- e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported.
- f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table).

Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Compounds	Non-detected Associated Compounds	
% Moisture < 70.0	No qualification		
70.0 < % Moisture < 90.0	J		
% Moisture > 90.0	J	R	

samples which have < 50 %	Solids		
		·	

Note: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.

Dilution performed

DILUTION FACTOR	REASON FOR DILUTION
	DILUTION FACTOR

All criteria were metN/A	
Criteria were not met	
and/or see below	

FIELD DUPLICATE PRECISION

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary.

Sample IDs	:J	C32876-3/JC3287	6-4 N	latrix:	Groundwater		
COMPOUND	SQL	SAMPLE	DUPLICATE	RPD	ACTION		
	ug/L	CONC.	CONC.				
Field duplicate analyzed with this data package. RPD within the required criteria of < 50 %.							

Actions:

- a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.
- b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:
 - i. If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).
 - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.
 - iii. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.
 - iv. If both sample and duplicate results are not detected, no action is needed.

OVERALL ASSESSMENT OF DATA Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data.

Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data:

Results are valid; the data can be used for

decision making purposes.